
* I w AD-A261 428

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTIC
,oTATts ELECTE

1J.S MAR 9 1993 U
C

Managing Real-Time Software Projects:
Problems and Issues

Luqi, NI. Shing, V. Berzins & L. Chmura

Approved for public release; distnibution is unlimited.

Prcpared for:

Naval Postgraduate School
Monterey, California 93943 93-05035

9-0503

A. V7,•

NAVAL POSTGRADUATE SCHOOL

Monterey, California

Rear Admiral R.W. West, Jr. HARRISON SHULL
Superintendent Provost

This report was prepared with research funded by the Naval Research Funds provided by the Naval

Postgraduate School.

Reproduction of all or part of this report is authorized.

This report was prepared by:

LUQI, Associate ProAssor

Reviewed by: Released by:

THOMAS WU/ PAUL MARTO
Associate Chairman for Dean of Research
Technical Research

UNCLASSIFIED
SECURI rTY CLASSI-ICA I)ON OF- I H15t PAUL

REPORT DOCUMENTATION PAGE
la. REPOR4T SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

UNCLASSILFIED______________ ______

2a SECURITY CLASSIFICATION AUTHRITY 3 DISTRiBUITION AVAILABILITY OF REPORT

2b E LSIFIAIMDWGAD GSCHEDULE Approved for public release,
2b. ECLASIF1ATIN/DONGRAINGdistribution is unlimited

4. PEFRMN ORAIZAIONRPR R E(S) 5. MONITO5RING ORGANiZATION REPORTNUMBERýSi

NPSCS-92-0 16

Ga. NAME OF PERFORMING ORGANIZATIOR Gb FFICE SYMBOL 7a NAME OF MONITORiNG ORG=ANiZATiON
Computer Science Dept. ti applica ble)

Naval Postgraduate School CS
6c ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City. State, and ZiP Code)

Monterey, CA 93943

8a. NAM ObF OUDNSPNOFFICE SYMBOL 9, PROCUREMENT INSTRUMENT IDENTIFICATiON NUJMBER
ORGANIZATION fIplcbe
Naval Postgraduate School T ,i p f~be

8c. ADDRESS (City, State, and ZIP Code) 16 SOURCE OFFU%:iý7N-N Jýý.PthRS
PROGRqAMI PROJECT TASK VVO;; uNT
ELEMENT No. NO NO ACCESSiON NO

Monterey, CA 939431

11. TITLE (Include Security Classification)
Managing Real-Time Software Projects: Problems and Issues

12 PERSONAL AUITHOR(S)
Luqi, M. Shing. V. Berzins & L. Chmura

13a. IPEORERT13-TM OE5 14. DATE OF REPORT (Year, Month, Day) 77PG C'IN

FROM TO 1992, Decemrber, 31
16.SUPEETR OAIINI

1I. COSATI CODES 118 SUBJECT TERMS (Conliriue on re verse if necessary and identitty by block inuinbell

FIELD IGROUP SUB-GROUP

I - I I
19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Hard real-time systems are defined as those software systems in which the correctness of the system depends not

only on the logica! result of computation, but also on the time at which the results are produced. Hard real-time

systems of interest to DoD are tailored specifically to their applications, employ various degrees of fault-tolerance,

and are typically embedded in larger systems. The process of design and development of these systems is often

plagued with uncertainty, ambiguity and inconsistency, This report examines problems and issues in managing

real-time software projects.

20 DiSTRIBUTIONWAVAILABILVI Y OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATIION

[3UNCLASSIFIEO/UNLIMITED [3 SAME AS RPT, [5 DTIC USERS UNCLASSIFIED
22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE tinclude Area Code) I22c OFFICE SYMBOL

Luqi (408) 656-2735 1 CSuL
DD FORM 1473,84 MAR 863 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete UNCLASSIFIED

NTIS CkA&I 7

DJIC TAH

MANAGING REAL-TIME SOFTWARE PROJECTS:Jsj,7'> .,
PROBLEMS AND ISSUES

Luqi, M. Shing and V. Berzins oIstrbuljor•

Computer Science Department Av,•ioldntty Cudes

Naval Postgraduate School
Monterey, CA 93943 oisti ,

Lou Chmura
Naval Research Laboratory

Washington, D.C. 20375

1. INTRODUCTION

"On February 25, 1991, a Patriot missile defense system operating at Dhahran, Saudi Arabia, dur-
ing Operation Dessert Storm failed to track and intercept an incoming Scud. This Scud subse-
quently hit an Army barracks, killing 28 Americans.

"The Patriot battery at Dhahran failed to track and intercept the Scud missile because of a soft-
ware problem in the system's weapon control computer. The problem led to an inaccurate tracking
calculation that became worse the longer the system operated. At the time of the incident, the bat-
teries had been operating continuously for over 100 hours. By then, the inaccuracy was serious
enough to cause the system to look in the wrong place for the incoming Scud.

"The Patriot had never before been used to defend Scud missiles nor was it expected to operate
continuously for long periods of time." [1

The single most costly event in the Operation Dessert Storm was the result of a software timing
error. It underscores the importance and difficulties in the aesign and development of hard real-
time software in our military systems. This report examines problems and issues in managing
real-time software projects.

2. CHARACTERISTICS OF HARD REAL-TIME SOFTWARE SYSTEMS

Hard real-time systems are defined as those software systems in which the correctness of the sys-
tem depends not only on the logical result of computation, but also on the time at which the results
are produced [2]. Hard real-time systems of interest to DoD are tailored specifically to their appli-
cations, employ various degrees of fault-tolerance, and are typically embedded in larger systems.
Major characteristics of hard real-time software systems include:

a) Complex and uncertain environment
Hard real-time software systems are typically embedded in larger systems, performing critical
control functions. These real-time control functions require the software system to interact with a
wide variety of hardware/software subsystems via networks. Because these hardware and soft-
ware systems undergo steady evolution and their precise specifications are often lacking, it is very

difficult to establish the initial requirements of the real-time systems to capture the problems cor-
rectly. It is also difficult to determine the impact of each change to the system's operating environ-
ment on software requirements, designs, and implementations as well as on the project cost and
schedule.

b)Stringent Software Reliability Requirements

Severe consequences may result if timing as well as logical correctness properties of the system
are not satisfied. Hence, all hard real-time systems require a high level of system reliability. A
failure in a real-time system can be defined as a deviation of the behavior of the system from its
specified behavior. Failures are caused by either mechanical (hardware) or algorithmic (software)
errors called faults. Two concepts are involved in building reliable systems:fault-prevention and
fault-tolerance. Fault-prevention is concerned with eliminating faults from the system before it
goes on line. There are two stages to fault-prevention: fault avoidance and fault removal. Fault
avoidance attempts to limit the introduction of potentially faulty components during the design
and implementation of the system. However, despite the best effort of avoidance techniques,
faults will inevitably be present in the system. It is then the concern of fault removal to find and
remove the causes of these errors. Fault-tolerance, on the other hand, is concerned with continu-
ing acceptable operation even if a failure in a subsystem does occur. Note that fault-tolerance
facilities must be included in all hard real-time systems even if the systems are fault-free. The rea-
son for this is that "fault-free" can only mean that the system corresponds to its specification. The
specification may contain errors or omissions and may be based on incorrect assumptions about
the system's environment. Real-time systems are often required to function correctly despite the
occurrence of some hardware and/or software failures, and/or human errors.

c) Typical Designs have Unpredictable Behavior

Typical tactical control software consists of numerous processes including communication pro-
cessing, known-object recognition, track processing, and display processing among others. While
conceptually these processes could frequently run concurrently, limitations in hardware resources
often force these processes to be sequentialized in a centralized implementation through an inter-
rupt driven prioritization scheme. This scheme produces a completely dynamic schedule whose
effects are difficult to predict, control, and certify.

3. MAJOR ISSUES IN MANAGING REAL-TIME SOFTWARE PROJECTS

The process of design and development of hard real-time software systems is often plagued with
uncertainty, ambiguity and inconsistency. The timing requirements are difficult for the user to pro-
vide and for the analysts to determine. It is also very difficult to determine whether a delivered
system meets its requirements. In this paper, we focus our attention on four major issues in man-
aging real-time software projects: software quality, productivity, maintenance, and systems acqui-
sition/integration.

a) Software Quality

i) Complexity demands accuracy

As the real-time embedded systems become increasingly complex, human understanding
becomes a limiting factor for building large reliable systems. No single person can fully under-
stand the whole system. Since the probability of faults increases exponentially with the size of the

2

system and the development team, we have to impose very stringent requirements on the accuracy
of the software development process. The stringency of these accuracy requirements gets so
severe for large systems that qualitatively new technologies are needed to fulfill them, such as
software tools capable of preventing or locating errors in a system design and implementation.

Every project manager must therefore face the question "Are we building the product right?". Ver-
ification involves checking that the system conforms to its specification (31. Due to the potential
severe consequences resulting from system failures, it is vital to have the correct specification for
the hard real-time systems and to build the systems to fully meet the correct specifications. Unfor-
tunately, hard real-time software systems are typically very large, and large systems are more
error prone. A precise and formal specification is essential to system verification. The major prob-
lem with formal specification and verification is that the field is still very new. There is no consen-
sus (not to mention standards) on the right model and right method. Almost all of the existing
formal specification and analysis methods are hard to use due to the lack of user-friendly tools and
integrated environments, and there is a trade-off between ease of use and sufficient richness of the
underlying models to express all of the issues that arise in real projects. There has been progress
in the formal specification and analysis of real-time systems. These formal techniques have influ-
enced the design of languages which are needed for programming-in-the-large and software tools
for software engineering. A number of formal languages for specifying and reasoning about the
requirements of real-time software systems have become available in recent years. These include
tabular methods, graphical methods, logic-based languages, and several process algebras. Recent
success stories in formal approaches to system development include: (i) formal specification and
verification has been used successfully in hardware development projects [71 and VHDL specifi-
cations have been required for government hardware development projects, (ii) formal security
models and formal verifications techniques are being used by NSA to certify the security of the
operating systems and (iii) NRL has successfully demonstrated the usefulness of Modechart spec-
ification and the SARTOR verifier (8, 91. Unfortunately, these success stories only amount to tiny
drops in a big ocean. Technology transfer is a very slow and difficult process. Continued commit-
ment from the management to modernize the software development methodology and to support
research and development of better tools and environments for the formal methods is needed to
create the capability to routinely develop reliable hard real-time systems.

ii) Communication requires different forms of specification
One major question faced by every project manager is "Are we building the right product?". To
build the right system, one must first understand what the customer really wants. The process of
establishing the services which the target system should provide and the constraints under which
the system must operate is called requirements analysis, and the process of checking that the tar-
get system, if implemented according to the specification, meets the expectations of the customers
is called validation [3]. The result of this analysis and validation is a requirements specification
which often constitutes the first formal document produced in the software process.

Real-time embedded systems are typically application specific. Most customers have only sketchy
ideas on how the target system should behave and software developers often lack complete
knowledge about the operating environment surrounding the system to be developed. Hence, it is
very important to express the requirements for a software system at different levels of abstraction,

3

with different degrees of formality, and to help the customer visualize the behavior of the target
system satisfying the requirements. The highest level requirements are usually informal and
imprecise, but they are understood best by the customers. The lower levels are more technical,
precise, and better suited for the needs of the system analysts and designers, but they are further
removed from the user's experiences and less well understood by the customers. (Interested read-
ers can refer to the NRL report by Clements et al for a set of evaluation criteria for real-time spec-
ification languages [41.) Because of the differences in the kinds of descriptions needed by the
customers and developers, it is not likely that any single representation for requirements can be
the "best" one for supporting the entire software development process [5]. One way to bridge the
communication gap between the customers and developers is by means of computer-aided rapid
prototyping [6). The desired computer-aided rapid prototyping environment should provide user-
friendly tools for the customers/analysts to walk through the high-level design and define the ini-
tial requirements as graphical objects, tables, and high-level semi-formal specifications. These
high-level requirements are then translated by the prototyping tools into low-level specifications
which are formal, precise and unambiguous, meeting the needs of the system analysts and design-
ers. The computer-aided rapid prototyping environment should also provide tools to help the
designer construct executable prototypes based on these low-level formal specifications. The
demonstrated behavior of the executable prototype, in turn, provides concrete information for the
customer to validate the requirements and to refine them if necessary.

iii) Portability requires Language Support
All approaches to programming real-time systems share a common characteristic: to control the
execution time so that the program will meet its timing constraints even under worst case condi-
tions. Ada83 was originally designed for embedded system implementation and does improve on
previous languages in some respects, but the design of real-time systems was not well understood
in 1983. Consequently, Ada83 it is not ideal for implementing hard real-time systems. The design-
ers of Ada83 have made a number of fundamental errors from the perspective of current technol-
ogy. Ada83 does not provide attributes to explicitly express task deadlines or timing constraints
that define the start, finish and maximum duration allowed for a constraint block. These problems
are intrinsic to Ada83 and cannot be resolved by any COTS real-time operating systems. The
Ada9x committee 114] is considering additional timing features, so we are likely to see at least
some of these features in future versions. Currently, many hard real-time systems are still written
in assembly language so that tight deadlines can be met. However, assembly codes are very costly
to build, maintain, and very hard to test. Commitment to developing and adopting a standard such
as Ada9X is needed to achieve portable hard real-time software that can be developed and main-
tained at reasonable cost.

b) Productivity

i) Large Development Teams need Tool Support for Coordination
Managers for real-time software projects must address problems common to developing any large
software system. As systems get larger, larger teams of engineers are needed to build the entire
system. We need a methodology that can integrate systematic planning and management with for-
mal methods and design automation t10], and tools that can help coordinate the efforts of large
teams [17].

ii) Quick Development requires Automatic Generation of Schedules

4

Manual approaches to creating real-time schedules are very labor-intensive and are not very reli-
able, since cut-and-try methods rely on testing to detect timing faults There is no systematic way
to tell when the process is really done, because absence of timing faults on any given set of test
data does not guarantee that a different set of test data will not expose more faults. Automatic
methods for generating schedules that are guaranteed to meet all the timing constraints if the
method terminates successfully can greatly speed up the process and make it more predictable.

iii) Personnel Turnover requires Computer-Aided Design Management
As the number of people in the team increases, the fraction of each worker's time devoted to com-
munication increases while the fraction of time left for software development decreases. To cut
down the communication overhead, we need precise design documents that can be managed on-
line. The need for precise documentation is intensified in real-time system development because
requirements of the sub-modules are changed frequently during over the course of development in
order to meet the tight timing constraints. Furthermore, many people may enter and leave the
development team in the middle of a large project. When a member of the original design team
leaves the project, undocumented critical information that is lost can be very costly or impossible
to recover. Hence, we need a methodology that supports automated design management in addi-
tion to on-line precise design documentation.

iv) Software Reuse needs Tool Support
One way to improve productivity is through code reuse. However, like formal specification of
real-time systems, software reuse technology is still at its infancy stage. There is a lack of stan-
dards in the specification of 'the reusable components, and lack of effective automated tools for
finding relevant components, assessing their suitability, and adapting them to particular applica-
tions. Better tools of these kinds are needed to increase the practical impact of software reuse.

c) Maintenance

i) Flexibility requires Scheduling Support
Evolution of real-time systems is particularly difficult because real-time constraints and finite
computing resources introduce dependencies between all of the functions of the system, most of
which would otherwise be independent. If such systems are implemented manually, then even
small changes can result in major redesign efforts because the schedule controlling the execution
of the time-critical processes must be reworked, and the boundaries of many seemingly unrelated
sub-functions may have to be readjusted throughout the entire system. We need tools to automate
the scheduling process and take the guesswork out of the schedule adjustments. Such tools will
enable developers to adapt systems to changing requirements more quickly and with greater reli-
ability.

ii) Re-engineering requires Modifications to Requirements and Designs
One common misconception about re-engineering is that one can write a formal specification
from an existing design or an existing program, and then use the formal specification for consis-
tency/completeness checking and code re-development. The major problem with this approach is
that developing formal specifications from existing designs inevitably exposes errors in the speci-
fications and designs. This requires changing the design as part of the process. In one project that
was constrained to specify the system as implemented, errors and all, there wound up being two
versions of the specifications, the current one and the correct one. This led to a subsequent effort

5

to change the code to conform to the correct specification.

d) Systems Integration and Acquisition

i) Early System Testing and Integration requires Prototyping
Traditional software development methods conduct extensive testing near the end of the project in
an attempt to ensure proper functioning of the system. The major weakness of this approach is
that there is no way to recover from major faults discovered at the end of the project, when avail-
able funds and time have been nearly exhausted. Furthermore, delivered systems that meet faulty
requirements can satisfy a contract without being useful to the customer. One way to overcome
the above weakness is to use a prototyping method that spans the entire life-cycle of the real-time
software [11, 12]. Unlike throw-away prototypes, the prototyping method should provide require-
ments and designs in a form that can be used for comparison during system testing. The existence
of a flexible prototype can significantly ease system testing and integration. When final imple-
mentations of subsystems are delivered, integration and testing can begin before all of the sub-
systems are complete by combining the final versions of the completed subsystems with prototype
versions of the parts that are still being developed.

ii) Prototyping Technology can help to Evaluate Delivered Systems
Two things are needed for a successful acquisition: to make sure that the system is delivered on
time and that the delivered system meets its requirements. A computer aided rapid prototyping
environment, besides being a useful tool to the hard real-time system developers, is also very use-
ful to the customers [13]. Acquisition managers can use the system to ensure that acquisition
efforts stay on track and that contractors deliver what they promise. The prototyping system
enables validation of requirements via prototyping demonstration, greatly reducing the risk of
contracting for construction of systems that do not meet customer needs. The validated high-level
designs resulting from prototyping can be used to formulate subcontracts for subsystems that pre-
vent many system integration problems. Other problems can be detected earlier by testing interac-
tions between delivered subsystems and prototypes of subsystems not yet complete. Prototypes
generated by the prototyping system should include structures for experimentally measuring
whether critical components meet their timing requirements. These structures can be used to eval-
uate real-time performance of systems delivered by contractors. The prototyping system should
provide automated functional testing that can compare results of delivered systems to results pro-
duced by the prototype.

4. RECOMMENDATIONS

a) Hard real-time software system developers
In addition to all the knowledge needed for developing large software systems, hard real-time
software system developers should also be familiar with methods for modelling complex hard
real-time systems and scheduling hard real-time tasks. An introduction to these two subjects can
be found in [2].

b) Hard real-time software system environment
Computer-aided tools is vital to the success of developing reliable hard real-time software. There
are many COTS software tools which support the design and coding of soft real-time software

6

systems (see [15, 161 for details). However, there are few COTS tools available to support the
development of hard real-time systems, and we have seen none that can take requirements all the
way to generated schedules and generated production-quality code. The major difference between
soft real-time systems and hard real-time systems is the existence of deadlines and the require-
ment of meeting these deadlines under worst-case situation in hard real-time systems. Two things
are needed to support the development of hard real-time systems:
(i) requirement and programming language support for specifying timing constraints such as max-
imum communication delays between processes, the maximum time allowed from the triggering
of the process to the completion of the process, the frequency of periodic operations, etc.
(ii) automatically generated schedules that guarantee meeting all deadlines of timing-ciritical pro-
cesses under the worst-case situation.

With the exception of CAPS [131, none of the existing COTS case tools generate code that guar-
antees meeting all hard real-time requirements.

5. REFERENCES

[1] GAO Report, "Patriot Missile Defense - Software Problem Led to System Failure at
Dhahran, Saudi Arabia", GAO[IMTEC-92-26, United States General Accounting Office,
Washington, D.C. 20548, Feb. 1992.

[2] J.K. Stankovic and K. Ramamritham, Tutorial on Hard Real-Time Systems, IEEE Com-
puter Society Press, Washington, D.C., 1988.

[3] B.W. Boehm, "Software engineering: R&D Trends and Defense Needs", in Research
Directions in Software Technology (P. Wegner ed.), MIT Press, Cambridge, MA, 1979.

[4] P.C. Clements, C.E. Gasarch and R.D. Jeffords, "Evaluation Criteria for Real-Time Speci-
fication Languages", NRL Memorandum Report 6935, Naval Research Laboratory, Wash-
ington, D.C., Feb. 1992.

[5] Luqi, R. Steigerwald, G. Hughes, F. Naveda, and V. Berzins, "CAPS as Requirements
Engineering Tool", Proc. Requirements Engineering and Analysis Workshop, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, 1991.

[6] Luqi, "Software Evolution via Rapid Prototyping", Computer, vol. 22, pp. 13-25, 1989.

[7] P. Narendran and J. Stillman, "Formal Verification of the Sobel Image Processing Chip",
Proc. 25th ACM/IEEE Design Automation Conference, pp. 211-217, 1988.

[8] F. Jahanian, R. Lee, and A. Mok, "Semantics of Modechart in Real Time Logic", Proc.
Hawaii International Conference of System Science, Jan. 1988, pp. 479-489.

[91 C. Heitmeyer and B. Labaw, "Specifying Hard Real-Time Software: Experience with a
Language and a Verifier", Real-Time Systems Newsletter, vol. 7, pp. 63-68, 1991.

[10] V. Berzins and Luqi, Software Engineering with Abstractions, Addison Wesley, 1991.

[11] Luqi and V. Berzins, "Rapidly Prototyping Real-Time Systems", IEEE Software, Sept.
1988, pp. 25-36.

[12] Luqi, "Real-Time Constraints in a Rapid Prototyping Language", Journal of Computer
Languages, Spring, 1992.

7

[131 Luqi and M.T. Shing, "CAPS - A Tool for Real-Time System Development and Acquisi-
tion", Naval Research Review, Summer, 1992.

[14] Ada 9x Project Report: Ada 9x Requirements, Office of the Under-secretary of Defense for
Acquisition, Washington, D.C., December 1990.

[15] Luqi, M. Shing, and V. Berzins, "Systematic Development of Hard Real-Time Software,"
NRL Report, 1991.

[161 Requirements Analysis & Design Tools Report, Software Technology Support Center, Hill

Air Force Base, UT 84056, April 1992.

[17] Luqi, "A Graph Model for Software Evolution", IEEE Transactions on Software Engi-
neering 16(8): 917-927, Aug. 1990.

8

INITIAL DISTRIBUTION LIST

Defense TLchnmcal Information Center
Cameron Station
Alexandria, VA 22314 2

Dudley Knox Library
Code 52
Naval Postgraduate School
Monterey, CA 93943-5100 2

Office of Research Administration
Code 08
Naval Postgraduate School
Monterey, CA 93943-5100

Chief of Naval Research
800 N. Quincy Street
Arlington, VA 22302-0268

Center for Naval Analysis
4401 Ford Avenue
Alexandria, VA 22302-0268

Chief of Naval Operations
Director, Information Systems (OP-945)
Navy Department
Washington, D.C. 20350-2000

Chairman, Code CS
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100 2

Dr. Luqi
Computer Science Department, Code CSLq
Naval Postgraduate School
Monterey, CA 93943-5100 10

Dr. Mantak Shing
Computer Science Department, Code Sh
Naval Postgraduate School
Monterey, CA 93943-5 100 10

9

Dr. Valdis Berzins
Computer Science Department, Code CSBe
Naval Postgraduate School
Monterey, CA 93943-5100 10

Dr. Thomas Wu
Computer Science Department, Code CSWq
Naval Postgraduate School
Monterey, CA 93943-5100

Dr. Louis Chmura
Naval Research Laboratory
Code 8140
4555 Overlook Ave. 500 SW
Washington, DC 20375-5000

10

